数字图像相关 (DIC) 已成为评估机械实验(尤其是疲劳裂纹扩展实验)的宝贵工具。评估需要裂纹路径和裂纹尖端位置的准确信息,但由于固有的噪声和伪影,这些信息很难获得。机器学习模型在识别标记的 DIC 位移数据时非常成功。为了训练具有良好泛化的稳健模型,需要大数据。然而,由于实验成本高昂且耗时,材料科学与工程领域的数据通常很少。我们提出了一种使用带有物理引导鉴别器的生成对抗网络生成合成 DIC 位移数据的方法。为了确定数据样本是真是假,该鉴别器还接收派生的 von Mises 等效应变。我们表明,这种物理引导方法可以提高样本的视觉质量、切片 Wasserstein 距离和几何分数。